CHEMISTRY LETTERS, pp. 1715-1718, 1982. © The Chemical Society of Japan 1982

SYNTHESIS OF COMPOUNDS RELATED TO SCLEROSPORAL

Takahiro KUMONAKA, Yasuhiro KANAI, Mitsutoshi YANAGIYA, and Takeshi MATSUMOTO*
Department of Chemistry, Faculty of Science, Hokkaido University
Sapporo 060

The proposed guaianoid structures for sclerosporal have turned out
to be erroneous through synthesis of these structures, starting

from (-)-carvone.

Sclerosporin, the major sporogenic substance of Sclerotinia flucticola, and
1)
and

its related metabolite, sclerosporal, were isolated by Marumo and co-workers
were formulated as‘i and E’respectively, by a trace-analytical technique. The
proposed structures possessed the trans-guaiane skeleton, but the stereochemistry
at C7, and the absolute configuration remained unsettled. For the purpose of
confirming the structures of these metabolites, we have synthesized two optically
active aldehydes, 3 and f} possessing the proposed planar structure for E>

5
~

Ketone 5,2) prepared from (-)-carvone, was alkylated with 1,3-dibromo-2-
pentene )(benzene, t-BuOK, reflux 3 h), and two stereoisomeric products were
readily separated (silica gel, hexane-benzene 1:1, y1€ld‘§.55%, 1.22%). On
treatment with Hg(OAc)z(HCO H, rt, overn1ght),4) a dione grand unexpectedly, a
5,6) were furnished from 6. Under similar conditions a dione‘g and a
formate }} 5,6) were obtained from 7. The products were separated (silica gel,
hexane-benzene 2:1) and the ratio of the dione and the formate was 9 to 2 gg_and
%9 fromlg, total 77% yield) and 3 to 4 Qa and %} from 7, total 98% yield). The
unprecedented formation of an allyl formate from a vinyl bromide may be explained
by a mechanism shown in Scheme 1. However, it is clear that further study is
necessary to confirm the suggested mechanism. Basic cyclization of each of the
diones gave known enone 12 +8) or 13 7:18,9) Dehydrogenation of these 12 and 13
(DDQ, benzene, reflux 36 h 65%) and subsequent photochemical rearrangement (45%
AcOH-H,0, 300 W high pressure mercury lump, 65%) gave 14 mp 107.6-107.8 °C, and
a;, mp 142.7-142.9 °C, respect1ve1y.10) Guaienones aﬁ and ié’were then reduced to

formate 10
‘V
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5) 5)

kg and %2' mp 67-68 °C (Li—NH3, 1.5 h, each about 65%). The trans ring fusion
of 18 and 19 were elucidated by ORD curves (18: c 0.30(CHC13) [a]319+1440(pk)
[a]300=0 [a]272=-1760(tr)7 %2: c 0.38(CHGl3) [a]320=-2640(tr) [a]301=0 [a]278=
+3672(pk)) according to Piers and Cheng’s ORD study on the reduction products of
16 and }].11) The hydroxyketone ;3 was then converted to its toxylhydrazone,
which afforded 292) by basic degradationlz) (Na, ethyleneglycol, reflux 2 h, 68%
from %f). Mesylation of 20 was secured by using 4-dimethylaminopyridine as base
(10 eq of CH3802C1 and DMAP, CH2C12, -15 °C, then rt for 60 h), and treatment of
the crude mesylate with basic alumina furnished a mixture 3}5) (82% from %9,

Alo(ls):A9=1:2). The mixture was directly subjected to an allylic oxidation (0.1

eq Seoz, excess t-BuOOH ag., 0 °C-rt 1 h). The desired allylic alcohol 235) and
another alcohol presumed to be 2}5) were given (total 46%, %}:£}=2:1). Further
oxidation of 23 (Mnoz, benzene, rt, overnight) afforded an optically active
aldehyde 3.

The ;;omeric aldehyde‘g was prepared from i? in a similar sequence and
similar yield.

Comparison of the spectral data described below of the synthetic aldehydesA§
and 4 with those of natural aclerosporal demonstrates clearly that the proposed
strdzture for sclerosporal must be revised. Furthermore, the structure 1 is also
erroneous because it has been establihsedl) that sclerosporin and sclerazéoral are
different only in the carbonyl functionality. Conformation of‘é_and‘é,as inferred
by the coupling constants obtained from the nmr spectrum at 400 MHz, is shown in
Fig 1.13,14)
6(CDCl3 400 MHz)‘gz 9.42(1H, s), 6.87(1H, 444, J=8.8, 5.6, 2.4), 5.45(1H, bs),
1.64(3H, 44, J=3.2, 1.6), 0.92(3H, 4, J=6.8), 0.90(3H, d, J=6.8). i: 9.37(1H, s),
6.75(1H, ddd4, J=8.4, 2.8, 2.8), 5.37(1H, bs), 1.67(3H, d4d, J=2.4, 1.6), 0.91(3H,
d, J=6.8), 0.90(3H, d, J=6.8). CD(hexane) 3: [p]=-19000 (226nm), 4: [8]1==27000
(223nm) . Ahex 3: 233nm (e=13400), i: 228nm (e=14100). [a]D(CHCl3) 3: -83.3° (c

max 4
0.79, ﬁf -61.8° (c 0.80).
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a2 R § RI=CiycH CHBICH,CHy , R CH, R
. 7 RY=CH,, R%=CH,CH=CHBrCH,CH
A, R =CHs 2 TCH)CHy
8 RL=CH,CH,COCH,CH,, R%=CHy
2 S RY=CH,, R®=CH.,CH,COCH,CH Z
0 2 R =CHg, R7=CH,CH,COCH,CH5, 0]
10 R}=CH,,CH=CHCH (OCHO) CH5, R*=CHg
1 2_ = -
. 11 R1=CH;, RZ=CH,CH=CHCH(OCHO)CH 12 R a(éHS
13 R=CH
R 'R1 1_ 2— 3— ~” 3
. 14 1gH, RY=cH,, R%=0H, R3=CH(CH,)
2 [“CHss 2 X 3)2
15 1aH, Rl=0H, RZ=CH,, R®=CH(CHj),
0= ~ 1 2 3
16 16H, R'=CHy, R7=0H, R%=C(=CH,)CH,
1— 2— 3: =
R3 17 1oH, RI=0H, R%=CHy, R3=C(=CH,)CH,
Fig. 1 J values in Hz

§ 3.12(Hza), 2.81(H;), 2.45(HzB), 2.43(Hea)
2.22(HgB), 2.19(Hea), 2.11(Hs), 1.65(H;11)
1.32(H;), 1.26(HeB)

H H
22 23
e v
Scheme 1
6 —= 6a HgX H
~ A 17 45l
R=CH,,CH-C-CHCH
2 1 3
Br
—»6b  HgX (OOCH
N~ ] +
R=CH2CH-CH-CHCH3
[}
Br
— 6C HgX OCHO —» 10 § 2.95(Hza), 2.81(H,), 2.63(Hs), 2.40(HeB)
’R‘;CHZéH!CHéHCHs ~ 2.31(Hea), 2.12(H2B), 1.82(HeB), 1.75(H,)
1

B 1.63(H;,1), 1.38(Hea)
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%}: m/z 266.1868 (v(neat) 1731, 1713 cm-l), 6(CDC13, 400 MHz), 8.02(1H, s),
5.59(1H, 4dt, J=14.5, 7), 5.51(1H, 44, J=14.5, 6.1), 5.41(1H, quint, J=6.1),
1.33(3H, 4, J=6.1), 0.99 and 0.97(1:1) (3H, each s), 0.91 and 0.90(each 3H, 4,
J=6.1). Isomeric mixture.
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A mixture of 12 and i} (10:3) was obtained from 5 and N,N-diethyl-l-amino-3-
pentanone (50%). However, separation of the mixture was difficult.

Hitherto, pure }3 and i} were obtained from natural products.7’8)
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Chem., 45, 1591 (1967).
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Cis-guaianoids corresponding to‘a and ﬁlare not suitable as structure of
sclerosporal, since models shown that these cis compounds will not exhibit a
coupling constant 12.4 Hz at § 2.60(1H, bd, not coupled with § 6.81, assigned
in ref 2 to C-1 proton), irrespective of their possible stable conformations,
such as‘ﬁ, In such cis fused cyclopentene compounds Jvic smaller than 10 Hz
and Jgem larger than 14 Hz, but not J 12.4 Hz ari)expected for protons on the
five membered ring. It appears that the reported nmr data at 100 MHz are
explained rather by assuming formula‘g’for sclerosporal. Line broadening at

§ 2.60 may then be accounted for by weak couplings between Hy-H, and H -H, as
well as virtual couplings between H -H3y and Hy-Hf. Recently, Katayama, Marumo
and Hattori have proposed formula‘g'mainly on the basis of the nmr spectral
analysis at 360 MHz(Annual Meeting of the Agricultural Society of Japan, April

1982, Abstr. p. 556).
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Most part of this paper was presented before the 45th National Meeting of the
Chemical Society of Japan on April 1982, Abstr. II, 759.

(Received August 3, 1982)



